Reversible DNA compaction by sulfite reductase regulates transcriptional activity of chloroplast nucleoids.

نویسندگان

  • Kohsuke Sekine
  • Toshiharu Hase
  • Naoki Sato
چکیده

The transcriptional activity of nucleoids changes during plastid development, presumably due to the morphological and molecular differences of the nucleoids. Pea chloroplast nucleoids have an abundant 70-kDa protein identified as sulfite reductase (SiR) that can compact DNA. Using an in vitro transcription assay, we show here that heparin increased the transcriptional activity of chloroplast nucleoids with concomitant release of SiR. Using a fluorometric method we developed for analyzing DNA compaction, we found that the fluorescence intensity of chloroplast DNA stained with 4',6-diamidino-2-phenylindole was decreased by the addition of SiR and increased by the subsequent addition of heparin. Addition of exogenous SiR increased the compaction of isolated nucleoids, and the addition of heparin relaxed it. SiR effectively repressed the in vitro transcription activity of nucleoids and counteracted the activation by heparin. These results suggest that SiR regulates the transcriptional activity of chloroplast nucleoids through changes in DNA compaction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

C-Terminal Region of Sulfite Reductase Is Important to Localize to Chloroplast Nucleoids in Land Plants

Chloroplast (cp) DNA is compacted into cpDNA-protein complexes, called cp nucleoids. An abundant and extensively studied component of cp nucleoids is the bifunctional protein sulfite reductase (SiR). The preconceived role of SiR as the core cp nucleoid protein, however, is becoming less likely because of the recent findings that SiRs do not associate with cp nucleoids in some plant species, suc...

متن کامل

WHIRLY1 is a major organizer of chloroplast nucleoids

WHIRLY1 is an abundant protein of chloroplast nucleoids, which has also been named pTAC-1 with regard to its detection in the proteome of transcriptionally active chromosomes (TAC). In barley primary foliage leaves, expression of the WHIRLY1 gene is highest at the base whereas protein accumulation is highest in the middle of the leaf where young developing chloroplasts are found. In order to el...

متن کامل

Proteomic characterization of a triton-insoluble fraction from chloroplasts defines a novel group of proteins associated with macromolecular structures.

Proteomic analysis of a Triton X-100 insoluble, 30,000 x g pellet from purified pea chloroplasts resulted in the identification of 179 nonredundant proteins. This chloroplast fraction was mostly depleted of chloroplast membranes since only 23% and 9% of the identified proteins were also observed in envelope and thylakoid membranes, respectively. One of the most abundant proteins in this fractio...

متن کامل

Detection and localization of a chloroplast-encoded HU-like protein that organizes chloroplast nucleoids.

Chloroplast DNA (cpDNA) is packed into discrete structures called chloroplast nucleoids (cp-nucleoids). The structure of cpDNA is thought to be important for its maintenance and regulation. In bacteria and mitochondria, histone-like proteins (such as HU and Abf2, respectively) are abundant and play important roles in DNA organization. However, a primary structural protein has yet to be found in...

متن کامل

Antifungal azoxybacilin exhibits activity by inhibiting gene expression of sulfite reductase.

Azoxybacilin, produced by Bacillus cereus, has a broad spectrum of antifungal activity in methionine-free medium and has been suggested to inhibit sulfite fixation. We have further investigated the mode of action by which azoxybacilin kills fungi. The compound inhibited the incorporation of [35S] sulfate into acid-insoluble fractions of Saccharomyces cerevisiae under conditions in which virtual...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 277 27  شماره 

صفحات  -

تاریخ انتشار 2002